Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 20: 41-51, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38230356

RESUMO

The reactions of 2,4-di-tert-butyl-6-(diphenylphosphino)phenol and various Michael acceptors (acrylonitrile, acrylamide, methyl vinyl ketone, several acrylates, methyl vinyl sulfone) yield the respective phosphonium phenolate zwitterions at room temperature. Nine different zwitterions were synthesized and fully characterized. Zwitterions with the poor Michael acceptors methyl methacrylate and methyl crotonate formed, but could not be isolated in pure form. The solid-state structures of two phosphonium phenolate molecules were determined by single-crystal X-ray crystallography. The bonding situation in the solid state together with NMR data suggests an important contribution of an ylidic resonance structure in these molecules. The phosphonium phenolates are characterized by UV-vis absorptions peaking around 360 nm and exhibit a negative solvatochromism. An analysis of the kinetics of the zwitterion formation was performed for three Michael acceptors (acrylonitrile, methyl acrylate, and acrylamide) in two different solvents (chloroform and methanol). The results revealed the proton transfer step necessary to stabilize the initially formed carbanion as the rate-determining step. A preorganization of the carbonyl bearing Michael acceptors allowed for reasonable fast direct proton transfer from the phenol in aprotic solvents. In contrast, acrylonitrile, not capable of forming a similar preorganization, is hardly reactive in chloroform solution, while in methanol the corresponding phosphonium phenolate is formed.

2.
Chem Sci ; 13(23): 6920-6928, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35774179

RESUMO

Using water as a monomer in polymerization reactions presents a unique and exquisite strategy towards more sustainable chemistry. Herein, the feasibility thereof is demonstrated by the introduction of the oxa-Michael polyaddition of water and divinyl sulfone. Upon nucleophilic or base catalysis, the corresponding aliphatic polyethersulfone is obtained in an interfacial polymerization at room temperature in high yield (>97%) within an hour. The polyethersulfone is characterized by relatively high molar mass averages and a dispersity around 2.5. The polymer was tested as a solid polymer electrolyte with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as the salt. Free-standing amorphous membranes were prepared by a melt process in a solvent-free manner. The polymer electrolyte containing 15 wt% LiTFSI featured an oxidative stability of up to 5.5 V vs. Li/Li+ at 45 °C and a conductivity of 1.45 × 10-8 S cm-1 at room temperature.

3.
Beilstein J Org Chem ; 17: 1689-1697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367347

RESUMO

Electron-rich triarylphosphines, namely 4-(methoxyphenyl)diphenylphosphine (MMTPP) and tris(4-trimethoxyphenyl)phosphine (TMTPP), outperform commonly used triphenylphosphine (TPP) in catalyzing oxa-Michael additions. A matrix consisting of three differently strong Michael acceptors and four alcohols of varying acidity was used to assess the activity of the three catalysts. All test reactions were performed with 1 mol % catalyst loading, under solvent-free conditions and at room temperature. The results reveal a decisive superiority of TMTPP for converting poor and intermediate Michael acceptors such as acrylamide and acrylonitrile and for converting less acidic alcohols like isopropanol. With stronger Michael acceptors and more acidic alcohols, the impact of the more electron-rich catalysts is less pronounced. The experimental activity trend was rationalized by calculating the Michael acceptor affinities of all phosphine-Michael acceptor combinations. Besides this parameter, the acidity of the alcohol has a strong impact on the reaction speed. The oxidation stability of the phosphines was also evaluated and the most electron-rich TMTPP was found to be only slightly more sensitive to oxidation than TPP. Finally, the catalysts were employed in the oxa-Michael polymerization of 2-hydroxyethyl acrylate. With TMTPP polymers characterized by number average molar masses of about 1200 g/mol at room temperature are accessible. Polymerizations carried out at 80 °C resulted in macromolecules containing a considerable share of Rauhut-Currier-type repeat units and consequently lower molar masses were obtained.

4.
Molecules ; 26(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806278

RESUMO

A facile, catalyst-free synthesis of a norbornylated cellulosic material (NC) with a high degree of substitution (2.9) is presented by direct reaction of trimethylsilyl cellulose with norbornene acid chloride. The resulting NC is highly soluble in organic solvents and its reactive double bonds were exploited for the copper-free inverse-electron demand Diels-Alder (iEDDA) "click" reaction with 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine. Reaction kinetics are comparable to the well-known Huisgen type 1,3-dipolar cycloaddition of azide with alkynes, while avoiding toxic catalysts.


Assuntos
Celulose/química , Química Click , Norbornanos/química , Solventes/química , Catálise , Reação de Cicloadição
5.
Nat Chem ; 13(5): 465-471, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33723377

RESUMO

Aprotic alkali metal-O2 batteries face two major obstacles to their chemistry occurring efficiently, the insulating nature of the formed alkali superoxides/peroxides and parasitic reactions that are caused by the highly reactive singlet oxygen (1O2). Redox mediators are recognized to be key for improving rechargeability. However, it is unclear how they affect 1O2 formation, which hinders strategies for their improvement. Here we clarify the mechanism of mediated peroxide and superoxide oxidation and thus explain how redox mediators either enhance or suppress 1O2 formation. We show that charging commences with peroxide oxidation to a superoxide intermediate and that redox potentials above ~3.5 V versus Li/Li+ drive 1O2 evolution from superoxide oxidation, while disproportionation always generates some 1O2. We find that 1O2 suppression requires oxidation to be faster than the generation of 1O2 from disproportionation. Oxidation rates decrease with growing driving force following Marcus inverted-region behaviour, establishing a region of maximum rate.

6.
Macromol Rapid Commun ; 41(5): e1900581, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32031747

RESUMO

Emulsion templated norbornadiene is cured via ring-opening metathesis polymerization yielding macroporous poly(norbornadiene) foams of 76% porosity exhibiting appealing stiffness combined with considerable ductility. The foams are readily oxidized in the presence of air at room temperature exhibiting an oxygen uptake capacity of more than 300 mg O2 g-1 foam. In closed volumes of air, a final oxygen level of a maximum of 0.0005 vol%, that is, 5 ppm(v) can be achieved after several hours at room temperature. The synergism of the porous morphology and the chemical nature of the polymer allows for the first example of an organic oxygen scavenger material with properties distinctly surpassing the state-of-the art in the field.


Assuntos
Norbornanos/química , Oxigênio/química , Polímeros/química , Estirenos/química , Emulsões , Microscopia Eletrônica de Varredura , Polimerização , Porosidade
7.
Angew Chem Int Ed Engl ; 58(20): 6535-6539, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-30884063

RESUMO

Singlet oxygen (1 O2 ) causes a major fraction of the parasitic chemistry during the cycling of non-aqueous alkali metal-O2 batteries and also contributes to interfacial reactivity of transition-metal oxide intercalation compounds. We introduce DABCOnium, the mono alkylated form of 1,4-diazabicyclo[2.2.2]octane (DABCO), as an efficient 1 O2 quencher with an unusually high oxidative stability of ca. 4.2 V vs. Li/Li+ . Previous quenchers are strongly Lewis basic amines with too low oxidative stability. DABCOnium is an ionic liquid, non-volatile, highly soluble in the electrolyte, stable against superoxide and peroxide, and compatible with lithium metal. The electrochemical stability covers the required range for metal-O2 batteries and greatly reduces 1 O2 related parasitic chemistry as demonstrated for the Li-O2 cell.

8.
Angew Chem Int Ed Engl ; 56(49): 15728-15732, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29024316

RESUMO

Aprotic sodium-O2 batteries require the reversible formation/dissolution of sodium superoxide (NaO2 ) on cycling. Poor cycle life has been associated with parasitic chemistry caused by the reactivity of electrolyte and electrode with NaO2 , a strong nucleophile and base. Its reactivity can, however, not consistently explain the side reactions and irreversibility. Herein we show that singlet oxygen (1 O2 ) forms at all stages of cycling and that it is a main driver for parasitic chemistry. It was detected in- and ex-situ via a 1 O2 trap that selectively and rapidly forms a stable adduct with 1 O2 . The 1 O2 formation mechanism involves proton-mediated superoxide disproportionation on discharge, rest, and charge below ca. 3.3 V, and direct electrochemical 1 O2 evolution above ca. 3.3 V. Trace water, which is needed for high capacities also drives parasitic chemistry. Controlling the highly reactive singlet oxygen is thus crucial for achieving highly reversible cell operation.

9.
Org Biomol Chem ; 14(45): 10576-10580, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27786326

RESUMO

The feasibility of a one pot approach for conducting mutually orthogonal thiol-Michael addition, copper catalyzed azide-alkyne and inverse electron demand Diels-Alder click chemistry on a tri-functional substrate was demonstrated.

10.
Biomacromolecules ; 17(3): 1083-92, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26840097

RESUMO

In this contribution, we explore the interaction of lignocellulosics and proteins aiming at a better understanding of their synergistic role in natural systems. In particular, the manufacturing and characterization of amphiphilic bicomponent thin films composed of hydrophilic cellulose and a hydrophobic lignin ester in different ratios is presented which may act as a very simplified model for real systems. Besides detailed characterizations of the films and mechanisms to explain their formation, nonspecific protein adsorption using bovine serum albumin (BSA) onto the films was studied using a quartz crystal microbalance with dissipation (QCM-D). As it turns out, the rather low nonspecific protein adsorption of BSA on cellulose is further reduced when these hydrophobic lignins are incorporated into the films. The lignin ester acts in these blend films as sacrificial component, probably via an emulsification mechanism. Additionally, the amphiphilicity of the films may prevent the adsorption of BSA as well. Although there are some indications, it remains unclear whether any kind of protein interactions in such systems are of specific nature.


Assuntos
Lignina/química , Membranas Artificiais , Soroalbumina Bovina/química , Adsorção , Tensoativos/química , Triticum/química
11.
Beilstein J Org Chem ; 12: 154-65, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26877818

RESUMO

A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru-O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations.

12.
Beilstein J Org Chem ; 11: 1458-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26425202

RESUMO

Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes.

13.
Macromol Rapid Commun ; 36(17): 1605-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26173197

RESUMO

Metal-organic frameworks (MOFs) nanoparticles in combination with a nonionic surfactant (Pluronic L-121) are used to stabilize dicyclopentadiene (DCPD)-in-water high internal phase emulsions (HIPEs). The resulting HIPEs containing the MIL-100(Fe) nanoparticles (MIL: Materials of Institut Lavoisier) at the interface between the oil- and the water-phases are then cured, and 100 µm thick, fully open, hierarchically porous hybrid membranes are obtained. The properties of the MIL-100(Fe)@pDCPD polyHIPE membranes are characterized and it is found that up to 14 wt% of the MIL-100(Fe) nanoparticles are incorporated in the hybrid material resulting in an increase of the microporosity up to 130 m(2) g(-1). Hybrid membranes show an appealing catalytic activity in Friedel-Crafts alkylation in a batch mode as well as in a flow-through mode, thereby demonstrating the preserved accessibility of Lewis acidic sites in the MOF nanostructures.


Assuntos
Membranas Artificiais , Catálise , Metais/química , Nanopartículas , Compostos Orgânicos/química
14.
Chem Commun (Camb) ; 51(36): 7725-8, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25853147

RESUMO

High internal phase emulsions of water in cyclooctene stabilised by sorbitan monooleate (Span 80) were cured by ring-opening metathesis polymerisation to release fully open macroporous polymer foams wherein the surfactant was covalently incorporated into the poly(cyclooctene) strands via chain transfer reactions.

15.
ACS Appl Mater Interfaces ; 6(21): 19075-81, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25335099

RESUMO

Zinc(II) oxide nanoparticles were used for the stabilization of dicyclopentadiene (DCPD)-water-based high internal phase emulsions (HIPEs), which were subsequently cured using ring-opening metathesis polymerization (ROMP). The morphology of the resulting ZnO-pDCPD nanocomposite foams was investigated in correlation to the nanoparticle loading and nanoparticle surface chemistry. While hydrophilic ZnO nanoparticles were found to be unsuitable for stabilizing the HIPE, oleic acid coated, yet hydrophobic ZnO nanoparticles were effective HIPE stabilizers, yielding polymer foams with ZnO nanoparticles located predominately at their surface. These inorganic/organic hybrid foam-materials were subsequently calcined at 550 °C for 15 min to obtain inorganic macroporous ZnO foams with a morphology reminiscent to the original hybrid foam, and a specific surface area of 1.5 m(2) g(-1). Longer calcination time (550 °C, 15 h) resulted in a sea urchin like morphology of the ZnO foams, characterized by higher specific surface area of 5.5 m(2) g(-1). The latter foam type showed an appealing catalytic performance in the catalytic wet air oxidation (CWAO) process for the destruction of bisphenol A.

16.
Chemistry ; 20(43): 14120-5, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25204738

RESUMO

Cyclic Ru-phenolates were synthesized, and these compounds were used as olefin metathesis catalysts. Investigation of their catalytic activity pointed out that, after activation with chemical agents, these catalysts promote ring-closing metathesis (RCM), enyne and cross-metathesis (CM) reactions, including butenolysis, with good results. Importantly, these latent catalysts are soluble in neat dicyclopentadiene (DCPD) and show good applicability in ring-opening metathesis polymeriyation (ROMP) of this monomer.

17.
Tetrahedron Lett ; 55(34): 4763-4766, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25152544

RESUMO

Inverse electron demand Diels-Alder additions (iEDDA) between 1,2,4,5-tetrazines and olefins have recently found widespread application as a novel 'click chemistry' scheme and as a mild technique for the modification of materials. Norbornenes are, due to their straightforward synthetic availability, especially interesting in the latter context. Therefore, the reactivity of different norbornene-based compounds was compared with unsubstituted norbornene and other alkenes using UV-vis measurements for the determination of reaction rates under pseudo first order conditions. Thereby, exo,exo-5-norbornene-2,3-dimethanol was found to be almost as reactive as unsubstituted norbornene whereas (±)-endo,exo-dimethyl-5-norbornene-2,3-dicarboxylate reacted only insignificanty faster than unstrained alkenes.

18.
Acta Chim Slov ; 61(1): 208-14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24664347

RESUMO

Nanocomposite polyHIPE foams with open-cellular morphology were obtained using nanoparticles (γFe2O3/Fe3O4), surfactant (Pluronic L121) or nanoparticle/surfactant stabilized dicyclopentadiene high internal phase emulsions (DCPD HIPEs). Upon curing, cavity sizes were found to vary drastically between 950 ± 360 µm down to 7 ±3 µm depending on the HIPE formulations. As-obtained nanocomposite polyHIPE foams were functionalized using elemental bromine in THF. Upon bromination the nanoparticles are moved from the cavities surfaces into the bulk phase of the polymer scaffold, which affects the inductive-heating capability of the magnetic nanocomposite foams decreasing it by the factor of 2.

19.
Chem Commun (Camb) ; 49(66): 7325-7, 2013 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-23851956

RESUMO

Inverse electron demand Diels-Alder reactions performed on the double bonds in open cellular macroporous poly(dicyclopentadiene) monoliths yield a high degree of functionalisation (up to 2 mmol pyridazines per g or 8 mmol N per g) with grafted di(pyridyl)pyridazines in a single step.

20.
Chem Soc Rev ; 42(12): 5131-42, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23563107

RESUMO

Inverse electron demand Diels-Alder reactions (iEDDA) between 1,2,4,5-tetrazines and olefins have emerged into a state-of-the art concept for the conjugation of biomolecules. Now, this reaction is also increasingly being applied in polymer science and materials science. The orthogonality of this exciting reaction to other well-established click chemistry schemes, its high reaction speed and its biocompatibility are key features of iEDDA making it a powerful alternative to existing ligation chemistries. The intention of this tutorial review is to introduce the reader to the fundamentals of inverse electron demand Diels-Alder additions and to answer the question whether iEDDA chemistry is living up to the criteria for a "click" reaction and can serve as a basis for future applications in post-synthetic modification of materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...